函数的扩展

1.参数默认值

ES6允许为函数的参数设置默认值,直接写在参数定义的后面

1
2
3
4
5
6
7
function log(x, y = 'World') {
console.log(x, y);
}

log('Hello') // Hello World
log('Hello', 'China') // Hello China
log('Hello', '') // Hello

这种写法比ES5简洁了很多,而且可以让阅读代码的人可以立刻意识到哪些参数是可以省略的,提高了代码的可维护性

注意:参数变量是默认声明的,所以不能在函数作用域中使用letconst再次声明

1
2
3
4
function foo(x = 5) {
let x = 1; // error
const x = 2; // error
}

使用参数默认值时,函数不能有同名参数

1
2
3
4
5
6
7
8
9
10
// 不报错
function foo(x, x, y) {
// ...
}

// 报错
function foo(x, x, y = 1) {
// ...
}
// SyntaxError: Duplicate parameter name not allowed in this context

另外,一个容易忽略的地方是,参数默认值不是传值的,而是每次都重新计算默认值表达式的值。也就是说,参数默认值是惰性求值的。

1
2
3
4
5
6
7
8
9
let x = 99;
function foo(p = x + 1) {
console.log(p);
}

foo() // 100

x = 100;
foo() // 101

上面代码中,参数p的默认值是x + 1。这时,每次调用函数foo,都会重新计算x + 1,而不是默认p等于 100。

与解构赋值结合使用

参数默认值可以与解构赋值的默认值,结合起来使用。

1
2
3
4
5
6
7
8
function foo({x, y = 5}) {
console.log(x, y);
}

foo({}) // undefined 5
foo({x: 1}) // 1 5
foo({x: 1, y: 2}) // 1 2
foo() // TypeError: Cannot read property 'x' of undefined

上面代码只使用了对象的解构赋值默认值,没有使用函数参数的默认值。只有当函数foo的参数是一个对象时,变量xy才会通过解构赋值生成。如果函数foo调用时没提供参数,变量xy就不会生成,从而报错。通过提供函数参数的默认值,就可以避免这种情况。

1
2
3
4
5
function foo({x, y = 5} = {}) {
console.log(x, y);
}

foo() // undefined 5

上面代码指定,如果没有提供参数,函数foo的参数默认为一个空对象。

下面是另一个解构赋值默认值的例子。

1
2
3
4
5
6
7
8
9
function fetch(url, { body = '', method = 'GET', headers = {} }) {
console.log(method);
}

fetch('http://example.com', {})
// "GET"

fetch('http://example.com')
// 报错

上面代码中,如果函数fetch的第二个参数是一个对象,就可以为它的三个属性设置默认值。这种写法不能省略第二个参数,如果结合函数参数的默认值,就可以省略第二个参数。这时,就出现了双重默认值。

1
2
3
4
5
6
function fetch(url, { body = '', method = 'GET', headers = {} } = {}) {
console.log(method);
}

fetch('http://example.com')
// "GET"

上面代码中,函数fetch没有第二个参数时,函数参数的默认值就会生效,然后才是解构赋值的默认值生效,变量method才会取到默认值GET

参数默认值的位置

通常情况下,定义了默认值的参数,应该是函数的尾参数。因为这样比较容易看出来,到底省略了哪些参数。如果非尾部的参数设置默认值,实际上这个参数是没法省略的。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// 例一
function f(x = 1, y) {
return [x, y];
}

f() // [1, undefined]
f(2) // [2, undefined]
f(, 1) // 报错
f(undefined, 1) // [1, 1]

// 例二
function f(x, y = 5, z) {
return [x, y, z];
}

f() // [undefined, 5, undefined]
f(1) // [1, 5, undefined]
f(1, ,2) // 报错
f(1, undefined, 2) // [1, 5, 2]

上面代码中,有默认值的参数都不是尾参数。这时,无法只省略该参数,而不省略它后面的参数,除非显式输入undefined

如果传入undefined,将触发该参数等于默认值,null则没有这个效果。

1
2
3
4
5
6
function foo(x = 5, y = 6) {
console.log(x, y);
}

foo(undefined, null)
// 5 null

上面代码中,x参数对应undefined,结果触发了默认值,y参数等于null,就没有触发默认值。

2.作用域

一旦设置了参数的默认值,函数进行声明初始化时,参数会形成一个单独的作用域(context)。等到初始化结束,这个作用域就会消失。这种语法行为,在不设置参数默认值时,是不会出现的。

1
2
3
4
5
6
7
var x = 1;

function f(x, y = x) {
console.log(y);
}

f(2) // 2

上面代码中,参数y的默认值等于变量x。调用函数f时,参数形成一个单独的作用域。在这个作用域里面,默认值变量x指向第一个参数x,而不是全局变量x,所以输出是2

再看下面的例子。

1
2
3
4
5
6
7
8
let x = 1;

function f(y = x) {
let x = 2;
console.log(y);
}

f() // 1

上面代码中,函数f调用时,参数y = x形成一个单独的作用域。这个作用域里面,变量x本身没有定义,所以指向外层的全局变量x。函数调用时,函数体内部的局部变量x影响不到默认值变量x

如果此时,全局变量x不存在,就会报错。

1
2
3
4
5
6
function f(y = x) {
let x = 2;
console.log(y);
}

f() // ReferenceError: x is not defined

下面这样写,也会报错。

1
2
3
4
5
6
7
var x = 1;

function foo(x = x) {
// ...
}

foo() // ReferenceError: Cannot access 'x' before initialization

上面代码中,参数x = x形成一个单独作用域。实际执行的是let x = x,由于暂时性死区的原因,这行代码会报错。

3.rest参数

ES6 引入 rest 参数(形式为...变量名),用于获取函数的多余参数,这样就不需要使用arguments对象了。rest 参数搭配的变量是一个数组,该变量将多余的参数放入数组中。

1
2
3
4
5
6
7
function fn(x,...args){
for(const item of args) {
console.log(item)
}
}

fn(1,2,3,4) // 2, 3, 4

arguments对象不是数组,而是一个类似数组的对象。所以为了使用数组的方法,必须使用Array.from先将其转为数组。rest 参数就不存在这个问题,它就是一个真正的数组,数组特有的方法都可以使用。

注意:如果指定了rest参数,那么它后面就不能跟其他的参数,否则会报错

4.严格模式

从 ES5 开始,函数内部可以设定为严格模式。

1
2
3
4
function doSomething(a, b) {
'use strict';
// code
}

ES2016 做了一点修改,规定只要函数参数使用了默认值、解构赋值、或者扩展运算符,那么函数内部就不能显式设定为严格模式,否则会报错。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
// 报错
function doSomething(a, b = a) {
'use strict';
// code
}

// 报错
const doSomething = function ({a, b}) {
'use strict';
// code
};

// 报错
const doSomething = (...a) => {
'use strict';
// code
};

const obj = {
// 报错
doSomething({a, b}) {
'use strict';
// code
}
};

这样规定的原因是,函数内部的严格模式,同时适用于函数体和函数参数。但是,函数执行的时候,先执行函数参数,然后再执行函数体。这样就有一个不合理的地方,只有从函数体之中,才能知道参数是否应该以严格模式执行,但是参数却应该先于函数体执行。

1
2
3
4
5
// 报错
function doSomething(value = 070) {
'use strict';
return value;
}

5.name属性

函数的name属性,返回该函数的函数名

函数的name属性,返回该函数的函数名。

1
2
function foo() {}
foo.name // "foo"

这个属性早就被浏览器广泛支持,但是直到 ES6,才将其写入了标准。

需要注意的是,ES6 对这个属性的行为做出了一些修改。如果将一个匿名函数赋值给一个变量,ES5 的name属性,会返回空字符串,而 ES6 的name属性会返回实际的函数名。

1
2
3
4
5
6
7
var f = function () {};

// ES5
f.name // ""

// ES6
f.name // "f"

如果将一个具名函数赋值给一个变量,则 ES5 和 ES6 的name属性都返回这个具名函数原本的名字。

1
2
3
4
5
6
7
const bar = function baz() {};

// ES5
bar.name // "baz"

// ES6
bar.name // "baz"

Function构造函数返回的函数实例,name属性的值为anonymous

1
(new Function).name // "anonymous"

bind返回的函数,name属性值会加上bound前缀。

1
2
3
4
function foo() {};
foo.bind({}).name // "bound foo"

(function(){}).bind({}).name // "bound "

6.箭头函数

ES6 允许使用“箭头”(=>)定义函数。

1
2
3
4
5
6
var f = v => v;

// 等同于
var f = function (v) {
return v;
};

如果箭头函数不需要参数或需要多个参数,就使用一个圆括号代表参数部分。

1
2
3
4
5
6
7
8
9
var f = () => 5;
// 等同于
var f = function () { return 5 };

var sum = (num1, num2) => num1 + num2;
// 等同于
var sum = function(num1, num2) {
return num1 + num2;
};

如果箭头函数的代码块部分多于一条语句,就要使用大括号将它们括起来,并且使用return语句返回。

1
var sum = (num1, num2) => { return num1 + num2; }

由于大括号被解释为代码块,所以如果箭头函数直接返回一个对象,必须在对象外面加上括号,否则会报错。

1
2
3
4
5
// 报错
let getTempItem = id => { id: id, name: "Temp" };

// 不报错
let getTempItem = id => ({ id: id, name: "Temp" });

下面是一种特殊情况,虽然可以运行,但会得到错误的结果。

1
2
let foo = () => { a: 1 };
foo() // undefined

上面代码中,原始意图是返回一个对象{ a: 1 },但是由于引擎认为大括号是代码块,所以执行了一行语句a: 1。这时,a可以被解释为语句的标签,因此实际执行的语句是1;,然后函数就结束了,没有返回值。

如果箭头函数只有一行语句,且不需要返回值,可以采用下面的写法,就不用写大括号了。

1
let fn = () => void doesNotReturn();

箭头函数可以与变量解构结合使用。

1
2
3
4
5
6
const full = ({ first, last }) => first + ' ' + last;

// 等同于
function full(person) {
return person.first + ' ' + person.last;
}

箭头函数使得表达更加简洁。

1
2
const isEven = n => n % 2 === 0;
const square = n => n * n;

上面代码只用了两行,就定义了两个简单的工具函数。如果不用箭头函数,可能就要占用多行,而且还不如现在这样写醒目。

箭头函数的一个用处是简化回调函数。

1
2
3
4
5
6
7
// 普通函数写法
[1,2,3].map(function (x) {
return x * x;
});

// 箭头函数写法
[1,2,3].map(x => x * x);

另一个例子是

1
2
3
4
5
6
7
// 普通函数写法
var result = values.sort(function (a, b) {
return a - b;
});

// 箭头函数写法
var result = values.sort((a, b) => a - b);

下面是 rest 参数与箭头函数结合的例子。

1
2
3
4
5
6
7
8
9
const numbers = (...nums) => nums;

numbers(1, 2, 3, 4, 5)
// [1,2,3,4,5]

const headAndTail = (head, ...tail) => [head, tail];

headAndTail(1, 2, 3, 4, 5)
// [1,[2,3,4,5]]

注意点

  • 箭头函数没有自己的this对象

  • 不可以当作构造函数

  • 不可以使用arguments对象,该对象在函数体内不存在。如果要用,可以用 rest 参数代替。

  • 不可以使用yield命令,因此箭头函数不能用作 Generator 函数。

最重要的一点,普通函数this是指向函数运行时所在的对象,而箭头函数没有自己的this,内部的this就是定义时上层作用域的this,也就是说,箭头函数内部的this指向是固定的,相比之下,普通函数的this指向是可变的。

1
2
3
4
5
6
7
8
9
10
function foo() {
setTimeout(() => {
console.log('id:', this.id);
}, 100);
}

var id = 21;

foo.call({ id: 42 });
// id: 42

上面代码中,setTimeout()的参数是一个箭头函数,这个箭头函数的定义生效是在foo函数生成时,而它的真正执行要等到 100 毫秒后。如果是普通函数,执行时this应该指向全局对象window,这时应该输出21。但是,箭头函数导致this总是指向函数定义生效时所在的对象(本例是{id: 42}),所以打印出来的是42

下面例子是回调函数分别为箭头函数和普通函数,对比它们内部的this指向。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
function Timer() {
this.s1 = 0;
this.s2 = 0;
// 箭头函数
setInterval(() => this.s1++, 1000);
// 普通函数
setInterval(function () {
this.s2++;
}, 1000);
}

var timer = new Timer();

setTimeout(() => console.log('s1: ', timer.s1), 3100);
setTimeout(() => console.log('s2: ', timer.s2), 3100);
// s1: 3
// s2: 0

上面代码中,Timer函数内部设置了两个定时器,分别使用了箭头函数和普通函数。前者的this绑定定义时所在的作用域(即Timer函数),后者的this指向运行时所在的作用域(即全局对象)。所以,3100 毫秒之后,timer.s1被更新了 3 次,而timer.s2一次都没更新。

箭头函数实际上可以让this指向固定化,绑定this使得它不再可变,这种特性很有利于封装回调函数。下面是一个例子,DOM 事件的回调函数封装在一个对象里面。

1
2
3
4
5
6
7
8
9
10
11
12
var handler = {
id: '123456',

init: function() {
document.addEventListener('click',
event => this.doSomething(event.type), false);
},

doSomething: function(type) {
console.log('Handling ' + type + ' for ' + this.id);
}
};

上面代码的init()方法中,使用了箭头函数,这导致这个箭头函数里面的this,总是指向handler对象。如果回调函数是普通函数,那么运行this.doSomething()这一行会报错,因为此时this指向document对象。

总之,箭头函数根本没有自己的this,导致内部的this就是外层代码块的this。正是因为它没有this,所以也就不能用作构造函数。

下面是 Babel 转箭头函数产生的 ES5 代码,就能清楚地说明this的指向。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// ES6
function foo() {
setTimeout(() => {
console.log('id:', this.id);
}, 100);
}

// ES5
function foo() {
var _this = this;

setTimeout(function () {
console.log('id:', _this.id);
}, 100);
}

上面代码中,转换后的 ES5 版本清楚地说明了,箭头函数里面根本没有自己的this,而是引用外层的this

请问下面的代码之中,this的指向有几个?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function foo() {
return () => {
return () => {
return () => {
console.log('id:', this.id);
};
};
};
}

var f = foo.call({id: 1});

var t1 = f.call({id: 2})()(); // id: 1
var t2 = f().call({id: 3})(); // id: 1
var t3 = f()().call({id: 4}); // id: 1

答案是this的指向只有一个,就是函数foothis,这是因为所有的内层函数都是箭头函数,都没有自己的this,它们的this其实都是最外层foo函数的this。所以不管怎么嵌套,t1t2t3都输出同样的结果。如果这个例子的所有内层函数都写成普通函数,那么每个函数的this都指向运行时所在的不同对象。

除了this,以下三个变量在箭头函数之中也是不存在的,指向外层函数的对应变量:argumentssupernew.target

1
2
3
4
5
6
7
8
function foo() {
setTimeout(() => {
console.log('args:', arguments);
}, 100);
}

foo(2, 4, 6, 8)
// args: [2, 4, 6, 8]

上面代码中,箭头函数内部的变量arguments,其实是函数fooarguments变量。

另外,由于箭头函数没有自己的this,所以当然也就不能用call()apply()bind()这些方法去改变this的指向。

1
2
3
4
5
6
(function() {
return [
(() => this.x).bind({ x: 'inner' })()
];
}).call({ x: 'outer' });
// ['outer']

上面代码中,箭头函数没有自己的this,所以bind方法无效,内部的this指向外部的this

长期以来,JavaScript 语言的this对象一直是一个令人头痛的问题,在对象方法中使用this,必须非常小心。箭头函数”绑定”this,很大程度上解决了这个困扰。

7.尾调用优化

什么是尾调用

尾调用,是函数式编程的一个重要概念,就是指某个函数的最后一步是调用另一个函数

1
2
3
function f(x){
return g(x);
}

上面代码中,函数f的最后一步是调用函数g,这就叫尾调用。

以下三种情况,都不属于尾调用。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
// 情况一
function f(x){
let y = g(x);
return y;
}

// 情况二
function f(x){
return g(x) + 1;
}

// 情况三
function f(x){
g(x);
}

上面代码中,情况一是调用函数g之后,还有赋值操作,所以不属于尾调用,即使语义完全一样。情况二也属于调用后还有操作,即使写在一行内。情况三等同于下面的代码。

1
2
3
4
function f(x){
g(x);
return undefined;
}

尾调用不一定出现在函数尾部,只要是最后一步操作即可。

1
2
3
4
5
6
function f(x) {
if (x > 0) {
return m(x)
}
return n(x);
}

上面代码中,函数mn都属于尾调用,因为它们都是函数f的最后一步操作。

尾调用优化

尾调用之所以与其他调用不同,就在于它的特殊的调用位置。

我们知道,函数调用会在内存形成一个“调用记录”,又称“调用帧”(call frame),保存调用位置和内部变量等信息。如果在函数A的内部调用函数B,那么在A的调用帧上方,还会形成一个B的调用帧。等到B运行结束,将结果返回到AB的调用帧才会消失。如果函数B内部还调用函数C,那就还有一个C的调用帧,以此类推。所有的调用帧,就形成一个“调用栈”(call stack)。

尾调用由于是函数的最后一步操作,所以不需要保留外层函数的调用帧,因为调用位置、内部变量等信息都不会再用到了,只要直接用内层函数的调用帧,取代外层函数的调用帧就可以了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
function f() {
let m = 1;
let n = 2;
return g(m + n);
}
f();

// 等同于
function f() {
return g(3);
}
f();

// 等同于
g(3);

上面代码中,如果函数g不是尾调用,函数f就需要保存内部变量mn的值、g的调用位置等信息。但由于调用g之后,函数f就结束了,所以执行到最后一步,完全可以删除f(x)的调用帧,只保留g(3)的调用帧。

这就叫做“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。

注意,只有不再用到外层函数的内部变量,内层函数的调用帧才会取代外层函数的调用帧,否则就无法进行“尾调用优化”。

1
2
3
4
5
6
7
function addOne(a){
var one = 1;
function inner(b){
return b + one;
}
return inner(a);
}

上面的函数不会进行尾调用优化,因为内层函数inner用到了外层函数addOne的内部变量one

注意,目前只有 Safari 浏览器支持尾调用优化,Chrome 和 Firefox 都不支持。

尾递归

函数调用自身,称为递归。如果尾调用自身,就称为尾递归。

递归非常耗费内存,因为需要同时保存成千上百个调用帧,很容易发生“栈溢出”错误(stack overflow)。但对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。

1
2
3
4
5
6
function factorial(n) {
if (n === 1) return 1;
return n * factorial(n - 1);
}

factorial(5) // 120

上面代码是一个阶乘函数,计算n的阶乘,最多需要保存n个调用记录,复杂度 O(n) 。

如果改写成尾递归,只保留一个调用记录,复杂度 O(1) 。

1
2
3
4
5
6
function factorial(n, total) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}

factorial(5, 1) // 120

还有一个比较著名的例子,就是计算 Fibonacci 数列,也能充分说明尾递归优化的重要性。

非尾递归的 Fibonacci 数列实现如下。

1
2
3
4
5
6
7
8
9
function Fibonacci (n) {
if ( n <= 1 ) {return 1};

return Fibonacci(n - 1) + Fibonacci(n - 2);
}

Fibonacci(10) // 89
Fibonacci(100) // 超时
Fibonacci(500) // 超时

尾递归优化过的 Fibonacci 数列实现如下。

1
2
3
4
5
6
7
8
9
function Fibonacci2 (n , ac1 = 1 , ac2 = 1) {
if( n <= 1 ) {return ac2};

return Fibonacci2 (n - 1, ac2, ac1 + ac2);
}

Fibonacci2(100) // 573147844013817200000
Fibonacci2(1000) // 7.0330367711422765e+208
Fibonacci2(10000) // Infinity

由此可见,“尾调用优化”对递归操作意义重大,所以一些函数式编程语言将其写入了语言规格。ES6 亦是如此,第一次明确规定,所有 ECMAScript 的实现,都必须部署“尾调用优化”。这就是说,ES6 中只要使用尾递归,就不会发生栈溢出(或者层层递归造成的超时),相对节省内存。

递归函数的改写

尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。比如上面的例子,阶乘函数 factorial 需要用到一个中间变量total,那就把这个中间变量改写成函数的参数。这样做的缺点就是不太直观,第一眼很难看出来,为什么计算5的阶乘,需要传入两个参数51

两个方法可以解决这个问题。方法一是在尾递归函数之外,再提供一个正常形式的函数。

1
2
3
4
5
6
7
8
9
10
function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}

function factorial(n) {
return tailFactorial(n, 1);
}

factorial(5) // 120

上面代码通过一个正常形式的阶乘函数factorial,调用尾递归函数tailFactorial,看起来就正常多了。

函数式编程有一个概念,叫做柯里化(currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
function currying(fn, n) {
return function (m) {
return fn.call(this, m, n);
};
}

function tailFactorial(n, total) {
if (n === 1) return total;
return tailFactorial(n - 1, n * total);
}

const factorial = currying(tailFactorial, 1);

factorial(5) // 120

上面代码通过柯里化,将尾递归函数tailFactorial变为只接受一个参数的factorial

第二种方法就简单多了,就是采用 ES6 的函数默认值。

1
2
3
4
5
6
function factorial(n, total = 1) {
if (n === 1) return total;
return factorial(n - 1, n * total);
}

factorial(5) // 120

上面代码中,参数total有默认值1,所以调用时不用提供这个值。

总结一下,递归本质上是一种循环操作。纯粹的函数式编程语言没有循环操作命令,所有的循环都用递归实现,这就是为什么尾递归对这些语言极其重要。对于其他支持“尾调用优化”的语言(比如 Lua,ES6),只需要知道循环可以用递归代替,而一旦使用递归,就最好使用尾递归。

8.Function.prototype.toString()

ES2019 对函数实例的toString()方法做出了修改。

toString()方法返回函数代码本身,以前会省略注释和空格。

1
2
3
4
function /* foo comment */ foo () {}

foo.toString()
// function foo() {}

上面代码中,函数foo的原始代码包含注释,函数名foo和圆括号之间有空格,但是toString()方法都把它们省略了。

修改后的toString()方法,明确要求返回一模一样的原始代码。

1
2
3
4
function /* foo comment */ foo () {}

foo.toString()
// "function /* foo comment */ foo () {}"

9.catch 命令的参数省略

JavaScript 语言的try...catch结构,以前明确要求catch命令后面必须跟参数,接受try代码块抛出的错误对象。

1
2
3
4
5
try {
// ...
} catch (err) {
// 处理错误
}

上面代码中,catch命令后面带有参数err

很多时候,catch代码块可能用不到这个参数。但是,为了保证语法正确,还是必须写。ES2019 做出了改变,允许catch语句省略参数。

1
2
3
4
5
try {
// ...
} catch {
// ...
}

Comments